Logo Search packages:      
Sourcecode: partclone version File versions  Download package

utils.c

/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#define _XOPEN_SOURCE 600
#define __USE_XOPEN2K
#include <stdio.h>
#include <stdlib.h>
#ifndef __CHECKER__
#include <sys/ioctl.h>
#include <sys/mount.h>
#endif
#include <sys/types.h>
#include <sys/stat.h>
#include <uuid/uuid.h>
#include <dirent.h>
#include <fcntl.h>
#include <unistd.h>
#include <mntent.h>
#include "kerncompat.h"
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "crc32c.h"
#include "utils.h"
#include "volumes.h"
#include "ioctl.h"

#ifdef __CHECKER__
#define BLKGETSIZE64 0
static inline int ioctl(int fd, int define, u64 *size) { return 0; }
#endif

static u64 reference_root_table[] = {
      [1] = BTRFS_ROOT_TREE_OBJECTID,
      [2] = BTRFS_EXTENT_TREE_OBJECTID,
      [3] = BTRFS_CHUNK_TREE_OBJECTID,
      [4] = BTRFS_DEV_TREE_OBJECTID,
      [5] = BTRFS_FS_TREE_OBJECTID,
      [6] = BTRFS_CSUM_TREE_OBJECTID,
};

int make_btrfs(int fd, const char *device, const char *label,
             u64 blocks[7], u64 num_bytes, u32 nodesize,
             u32 leafsize, u32 sectorsize, u32 stripesize)
{
      struct btrfs_super_block super;
      struct extent_buffer *buf;
      struct btrfs_root_item root_item;
      struct btrfs_disk_key disk_key;
      struct btrfs_extent_item *extent_item;
      struct btrfs_inode_item *inode_item;
      struct btrfs_chunk *chunk;
      struct btrfs_dev_item *dev_item;
      struct btrfs_dev_extent *dev_extent;
      u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
      u8 *ptr;
      int i;
      int ret;
      u32 itemoff;
      u32 nritems = 0;
      u64 first_free;
      u64 ref_root;
      u32 array_size;
      u32 item_size;

      first_free = BTRFS_SUPER_INFO_OFFSET + sectorsize * 2 - 1;
      first_free &= ~((u64)sectorsize - 1);

      memset(&super, 0, sizeof(super));

      num_bytes = (num_bytes / sectorsize) * sectorsize;
      uuid_generate(super.fsid);
      uuid_generate(super.dev_item.uuid);
      uuid_generate(chunk_tree_uuid);

      btrfs_set_super_bytenr(&super, blocks[0]);
      btrfs_set_super_num_devices(&super, 1);
      strncpy((char *)&super.magic, BTRFS_MAGIC, sizeof(super.magic));
      btrfs_set_super_generation(&super, 1);
      btrfs_set_super_root(&super, blocks[1]);
      btrfs_set_super_chunk_root(&super, blocks[3]);
      btrfs_set_super_total_bytes(&super, num_bytes);
      btrfs_set_super_bytes_used(&super, 6 * leafsize);
      btrfs_set_super_sectorsize(&super, sectorsize);
      btrfs_set_super_leafsize(&super, leafsize);
      btrfs_set_super_nodesize(&super, nodesize);
      btrfs_set_super_stripesize(&super, stripesize);
      btrfs_set_super_csum_type(&super, BTRFS_CSUM_TYPE_CRC32);
      btrfs_set_super_chunk_root_generation(&super, 1);
      if (label)
            strcpy(super.label, label);

      buf = malloc(sizeof(*buf) + max(sectorsize, leafsize));

      /* create the tree of root objects */
      memset(buf->data, 0, leafsize);
      buf->len = leafsize;
      btrfs_set_header_bytenr(buf, blocks[1]);
      btrfs_set_header_nritems(buf, 4);
      btrfs_set_header_generation(buf, 1);
      btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
      btrfs_set_header_owner(buf, BTRFS_ROOT_TREE_OBJECTID);
      write_extent_buffer(buf, super.fsid, (unsigned long)
                      btrfs_header_fsid(buf), BTRFS_FSID_SIZE);

      write_extent_buffer(buf, chunk_tree_uuid, (unsigned long)
                      btrfs_header_chunk_tree_uuid(buf),
                      BTRFS_UUID_SIZE);

      /* create the items for the root tree */
      memset(&root_item, 0, sizeof(root_item));
      inode_item = &root_item.inode;
      btrfs_set_stack_inode_generation(inode_item, 1);
      btrfs_set_stack_inode_size(inode_item, 3);
      btrfs_set_stack_inode_nlink(inode_item, 1);
      btrfs_set_stack_inode_nbytes(inode_item, leafsize);
      btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
      btrfs_set_root_refs(&root_item, 1);
      btrfs_set_root_used(&root_item, leafsize);
      btrfs_set_root_generation(&root_item, 1);

      memset(&disk_key, 0, sizeof(disk_key));
      btrfs_set_disk_key_type(&disk_key, BTRFS_ROOT_ITEM_KEY);
      btrfs_set_disk_key_offset(&disk_key, 0);
      nritems = 0;

      itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - sizeof(root_item);
      btrfs_set_root_bytenr(&root_item, blocks[2]);
      btrfs_set_disk_key_objectid(&disk_key, BTRFS_EXTENT_TREE_OBJECTID);
      btrfs_set_item_key(buf, &disk_key, nritems);
      btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff);
      btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems),
                      sizeof(root_item));
      write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf,
                      nritems), sizeof(root_item));
      nritems++;

      itemoff = itemoff - sizeof(root_item);
      btrfs_set_root_bytenr(&root_item, blocks[4]);
      btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_TREE_OBJECTID);
      btrfs_set_item_key(buf, &disk_key, nritems);
      btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff);
      btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems),
                      sizeof(root_item));
      write_extent_buffer(buf, &root_item,
                      btrfs_item_ptr_offset(buf, nritems),
                      sizeof(root_item));
      nritems++;

      itemoff = itemoff - sizeof(root_item);
      btrfs_set_root_bytenr(&root_item, blocks[5]);
      btrfs_set_disk_key_objectid(&disk_key, BTRFS_FS_TREE_OBJECTID);
      btrfs_set_item_key(buf, &disk_key, nritems);
      btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff);
      btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems),
                      sizeof(root_item));
      write_extent_buffer(buf, &root_item,
                      btrfs_item_ptr_offset(buf, nritems),
                      sizeof(root_item));
      nritems++;

      itemoff = itemoff - sizeof(root_item);
      btrfs_set_root_bytenr(&root_item, blocks[6]);
      btrfs_set_disk_key_objectid(&disk_key, BTRFS_CSUM_TREE_OBJECTID);
      btrfs_set_item_key(buf, &disk_key, nritems);
      btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff);
      btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems),
                      sizeof(root_item));
      write_extent_buffer(buf, &root_item,
                      btrfs_item_ptr_offset(buf, nritems),
                      sizeof(root_item));
      nritems++;


      csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
      ret = pwrite(fd, buf->data, leafsize, blocks[1]);
      BUG_ON(ret != leafsize);

      /* create the items for the extent tree */
      nritems = 0;
      itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize);
      for (i = 1; i < 7; i++) {
            BUG_ON(blocks[i] < first_free);
            BUG_ON(blocks[i] < blocks[i - 1]);

            /* create extent item */
            itemoff -= sizeof(struct btrfs_extent_item) +
                     sizeof(struct btrfs_tree_block_info);
            btrfs_set_disk_key_objectid(&disk_key, blocks[i]);
            btrfs_set_disk_key_offset(&disk_key, leafsize);
            btrfs_set_disk_key_type(&disk_key, BTRFS_EXTENT_ITEM_KEY);
            btrfs_set_item_key(buf, &disk_key, nritems);
            btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems),
                              itemoff);
            btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems),
                            sizeof(struct btrfs_extent_item) +
                            sizeof(struct btrfs_tree_block_info));
            extent_item = btrfs_item_ptr(buf, nritems,
                                   struct btrfs_extent_item);
            btrfs_set_extent_refs(buf, extent_item, 1);
            btrfs_set_extent_generation(buf, extent_item, 1);
            btrfs_set_extent_flags(buf, extent_item,
                               BTRFS_EXTENT_FLAG_TREE_BLOCK);
            nritems++;

            /* create extent ref */
            ref_root = reference_root_table[i];
            btrfs_set_disk_key_objectid(&disk_key, blocks[i]);
            btrfs_set_disk_key_offset(&disk_key, ref_root);
            btrfs_set_disk_key_type(&disk_key, BTRFS_TREE_BLOCK_REF_KEY);
            btrfs_set_item_key(buf, &disk_key, nritems);
            btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems),
                              itemoff);
            btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), 0);
            nritems++;
      }
      btrfs_set_header_bytenr(buf, blocks[2]);
      btrfs_set_header_owner(buf, BTRFS_EXTENT_TREE_OBJECTID);
      btrfs_set_header_nritems(buf, nritems);
      csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
      ret = pwrite(fd, buf->data, leafsize, blocks[2]);
      BUG_ON(ret != leafsize);

      /* create the chunk tree */
      nritems = 0;
      item_size = sizeof(*dev_item);
      itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - item_size;

      /* first device 1 (there is no device 0) */
      btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_ITEMS_OBJECTID);
      btrfs_set_disk_key_offset(&disk_key, 1);
      btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_ITEM_KEY);
      btrfs_set_item_key(buf, &disk_key, nritems);
      btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff);
      btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), item_size);

      dev_item = btrfs_item_ptr(buf, nritems, struct btrfs_dev_item);
      btrfs_set_device_id(buf, dev_item, 1);
      btrfs_set_device_generation(buf, dev_item, 0);
      btrfs_set_device_total_bytes(buf, dev_item, num_bytes);
      btrfs_set_device_bytes_used(buf, dev_item,
                            BTRFS_MKFS_SYSTEM_GROUP_SIZE);
      btrfs_set_device_io_align(buf, dev_item, sectorsize);
      btrfs_set_device_io_width(buf, dev_item, sectorsize);
      btrfs_set_device_sector_size(buf, dev_item, sectorsize);
      btrfs_set_device_type(buf, dev_item, 0);

      write_extent_buffer(buf, super.dev_item.uuid,
                      (unsigned long)btrfs_device_uuid(dev_item),
                      BTRFS_UUID_SIZE);
      write_extent_buffer(buf, super.fsid,
                      (unsigned long)btrfs_device_fsid(dev_item),
                      BTRFS_UUID_SIZE);
      read_extent_buffer(buf, &super.dev_item, (unsigned long)dev_item,
                     sizeof(*dev_item));

      nritems++;
      item_size = btrfs_chunk_item_size(1);
      itemoff = itemoff - item_size;

      /* then we have chunk 0 */
      btrfs_set_disk_key_objectid(&disk_key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
      btrfs_set_disk_key_offset(&disk_key, 0);
      btrfs_set_disk_key_type(&disk_key, BTRFS_CHUNK_ITEM_KEY);
      btrfs_set_item_key(buf, &disk_key, nritems);
      btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff);
      btrfs_set_item_size(buf, btrfs_item_nr(buf,  nritems), item_size);

      chunk = btrfs_item_ptr(buf, nritems, struct btrfs_chunk);
      btrfs_set_chunk_length(buf, chunk, BTRFS_MKFS_SYSTEM_GROUP_SIZE);
      btrfs_set_chunk_owner(buf, chunk, BTRFS_EXTENT_TREE_OBJECTID);
      btrfs_set_chunk_stripe_len(buf, chunk, 64 * 1024);
      btrfs_set_chunk_type(buf, chunk, BTRFS_BLOCK_GROUP_SYSTEM);
      btrfs_set_chunk_io_align(buf, chunk, sectorsize);
      btrfs_set_chunk_io_width(buf, chunk, sectorsize);
      btrfs_set_chunk_sector_size(buf, chunk, sectorsize);
      btrfs_set_chunk_num_stripes(buf, chunk, 1);
      btrfs_set_stripe_devid_nr(buf, chunk, 0, 1);
      btrfs_set_stripe_offset_nr(buf, chunk, 0, 0);
      nritems++;

      write_extent_buffer(buf, super.dev_item.uuid,
                      (unsigned long)btrfs_stripe_dev_uuid(&chunk->stripe),
                      BTRFS_UUID_SIZE);

      /* copy the key for the chunk to the system array */
      ptr = super.sys_chunk_array;
      array_size = sizeof(disk_key);

      memcpy(ptr, &disk_key, sizeof(disk_key));
      ptr += sizeof(disk_key);

      /* copy the chunk to the system array */
      read_extent_buffer(buf, ptr, (unsigned long)chunk, item_size);
      array_size += item_size;
      ptr += item_size;
      btrfs_set_super_sys_array_size(&super, array_size);

      btrfs_set_header_bytenr(buf, blocks[3]);
      btrfs_set_header_owner(buf, BTRFS_CHUNK_TREE_OBJECTID);
      btrfs_set_header_nritems(buf, nritems);
      csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
      ret = pwrite(fd, buf->data, leafsize, blocks[3]);

      /* create the device tree */
      nritems = 0;
      itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) -
            sizeof(struct btrfs_dev_extent);

      btrfs_set_disk_key_objectid(&disk_key, 1);
      btrfs_set_disk_key_offset(&disk_key, 0);
      btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_EXTENT_KEY);
      btrfs_set_item_key(buf, &disk_key, nritems);
      btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff);
      btrfs_set_item_size(buf, btrfs_item_nr(buf,  nritems),
                      sizeof(struct btrfs_dev_extent));
      dev_extent = btrfs_item_ptr(buf, nritems, struct btrfs_dev_extent);
      btrfs_set_dev_extent_chunk_tree(buf, dev_extent,
                              BTRFS_CHUNK_TREE_OBJECTID);
      btrfs_set_dev_extent_chunk_objectid(buf, dev_extent,
                              BTRFS_FIRST_CHUNK_TREE_OBJECTID);
      btrfs_set_dev_extent_chunk_offset(buf, dev_extent, 0);

      write_extent_buffer(buf, chunk_tree_uuid,
                (unsigned long)btrfs_dev_extent_chunk_tree_uuid(dev_extent),
                BTRFS_UUID_SIZE);

      btrfs_set_dev_extent_length(buf, dev_extent,
                            BTRFS_MKFS_SYSTEM_GROUP_SIZE);
      nritems++;

      btrfs_set_header_bytenr(buf, blocks[4]);
      btrfs_set_header_owner(buf, BTRFS_DEV_TREE_OBJECTID);
      btrfs_set_header_nritems(buf, nritems);
      csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
      ret = pwrite(fd, buf->data, leafsize, blocks[4]);

      /* create the FS root */
      btrfs_set_header_bytenr(buf, blocks[5]);
      btrfs_set_header_owner(buf, BTRFS_FS_TREE_OBJECTID);
      btrfs_set_header_nritems(buf, 0);
      csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
      ret = pwrite(fd, buf->data, leafsize, blocks[5]);
      BUG_ON(ret != leafsize);

      /* finally create the csum root */
      btrfs_set_header_bytenr(buf, blocks[6]);
      btrfs_set_header_owner(buf, BTRFS_CSUM_TREE_OBJECTID);
      btrfs_set_header_nritems(buf, 0);
      csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
      ret = pwrite(fd, buf->data, leafsize, blocks[6]);
      BUG_ON(ret != leafsize);

      /* and write out the super block */
      BUG_ON(sizeof(super) > sectorsize);
      memset(buf->data, 0, sectorsize);
      memcpy(buf->data, &super, sizeof(super));
      buf->len = sectorsize;
      csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
      ret = pwrite(fd, buf->data, sectorsize, blocks[0]);
      BUG_ON(ret != sectorsize);


      free(buf);
      return 0;
}

static u64 device_size(int fd, struct stat *st)
{
      u64 size;
      if (S_ISREG(st->st_mode)) {
            return st->st_size;
      }
      if (!S_ISBLK(st->st_mode)) {
            return 0;
      }
      if (ioctl(fd, BLKGETSIZE64, &size) >= 0) {
            return size;
      }
      return 0;
}

static int zero_blocks(int fd, off_t start, size_t len)
{
      char *buf = malloc(len);
      int ret = 0;
      ssize_t written;

      if (!buf)
            return -ENOMEM;
      memset(buf, 0, len);
      written = pwrite(fd, buf, len, start);
      if (written != len)
            ret = -EIO;
      free(buf);
      return ret;
}

static int zero_dev_start(int fd)
{
      off_t start = 0;
      size_t len = 2 * 1024 * 1024;

#ifdef __sparc__
      /* don't overwrite the disk labels on sparc */
      start = 1024;
      len -= 1024;
#endif
      return zero_blocks(fd, start, len);
}

static int zero_dev_end(int fd, u64 dev_size)
{
      size_t len = 2 * 1024 * 1024;
      off_t start = dev_size - len;

      return zero_blocks(fd, start, len);
}

int btrfs_add_to_fsid(struct btrfs_trans_handle *trans,
                  struct btrfs_root *root, int fd, char *path,
                  u64 block_count, u32 io_width, u32 io_align,
                  u32 sectorsize)
{
      struct btrfs_super_block *disk_super;
      struct btrfs_super_block *super = &root->fs_info->super_copy;
      struct btrfs_device *device;
      struct btrfs_dev_item *dev_item;
      char *buf;
      u64 total_bytes;
      u64 num_devs;
      int ret;

      device = kmalloc(sizeof(*device), GFP_NOFS);
      if (!device)
            return -ENOMEM;
      buf = kmalloc(sectorsize, GFP_NOFS);
      if (!buf) {
            kfree(device);
            return -ENOMEM;
      }
      BUG_ON(sizeof(*disk_super) > sectorsize);
      memset(buf, 0, sectorsize);

      disk_super = (struct btrfs_super_block *)buf;
      dev_item = &disk_super->dev_item;

      uuid_generate(device->uuid);
      device->devid = 0;
      device->type = 0;
      device->io_width = io_width;
      device->io_align = io_align;
      device->sector_size = sectorsize;
      device->fd = fd;
      device->writeable = 1;
      device->total_bytes = block_count;
      device->bytes_used = 0;
      device->total_ios = 0;
      device->dev_root = root->fs_info->dev_root;

      ret = btrfs_add_device(trans, root, device);
      BUG_ON(ret);

      total_bytes = btrfs_super_total_bytes(super) + block_count;
      btrfs_set_super_total_bytes(super, total_bytes);

      num_devs = btrfs_super_num_devices(super) + 1;
      btrfs_set_super_num_devices(super, num_devs);

      memcpy(disk_super, super, sizeof(*disk_super));

      printf("adding device %s id %llu\n", path,
             (unsigned long long)device->devid);

      btrfs_set_super_bytenr(disk_super, BTRFS_SUPER_INFO_OFFSET);
      btrfs_set_stack_device_id(dev_item, device->devid);
      btrfs_set_stack_device_type(dev_item, device->type);
      btrfs_set_stack_device_io_align(dev_item, device->io_align);
      btrfs_set_stack_device_io_width(dev_item, device->io_width);
      btrfs_set_stack_device_sector_size(dev_item, device->sector_size);
      btrfs_set_stack_device_total_bytes(dev_item, device->total_bytes);
      btrfs_set_stack_device_bytes_used(dev_item, device->bytes_used);
      memcpy(&dev_item->uuid, device->uuid, BTRFS_UUID_SIZE);

      ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET);
      BUG_ON(ret != sectorsize);

      kfree(buf);
      list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
      device->fs_devices = root->fs_info->fs_devices;
      return 0;
}

int btrfs_prepare_device(int fd, char *file, int zero_end, u64 *block_count_ret)
{
      u64 block_count;
      u64 bytenr;
      struct stat st;
      int i, ret;

      ret = fstat(fd, &st);
      if (ret < 0) {
            fprintf(stderr, "unable to stat %s\n", file);
            exit(1);
      }

      block_count = device_size(fd, &st);
      if (block_count == 0) {
            fprintf(stderr, "unable to find %s size\n", file);
            exit(1);
      }
      zero_end = 1;

      if (block_count < 256 * 1024 * 1024) {
            fprintf(stderr, "device %s is too small "
                    "(must be at least 256 MB)\n", file);
            exit(1);
      }
      ret = zero_dev_start(fd);
      if (ret) {
            fprintf(stderr, "failed to zero device start %d\n", ret);
            exit(1);
      }

      for (i = 0 ; i < BTRFS_SUPER_MIRROR_MAX; i++) {
            bytenr = btrfs_sb_offset(i);
            if (bytenr >= block_count)
                  break;
            zero_blocks(fd, bytenr, BTRFS_SUPER_INFO_SIZE);
      }

      if (zero_end) {
            ret = zero_dev_end(fd, block_count);
            if (ret) {
                  fprintf(stderr, "failed to zero device end %d\n", ret);
                  exit(1);
            }
      }
      *block_count_ret = block_count;
      return 0;
}

int btrfs_make_root_dir(struct btrfs_trans_handle *trans,
                  struct btrfs_root *root, u64 objectid)
{
      int ret;
      struct btrfs_inode_item inode_item;

      memset(&inode_item, 0, sizeof(inode_item));
      btrfs_set_stack_inode_generation(&inode_item, trans->transid);
      btrfs_set_stack_inode_size(&inode_item, 0);
      btrfs_set_stack_inode_nlink(&inode_item, 1);
      btrfs_set_stack_inode_nbytes(&inode_item, root->leafsize);
      btrfs_set_stack_inode_mode(&inode_item, S_IFDIR | 0555);

      if (root->fs_info->tree_root == root)
            btrfs_set_super_root_dir(&root->fs_info->super_copy, objectid);

      ret = btrfs_insert_inode(trans, root, objectid, &inode_item);
      if (ret)
            goto error;

      ret = btrfs_insert_inode_ref(trans, root, "..", 2, objectid, objectid, 0);
      if (ret)
            goto error;

      btrfs_set_root_dirid(&root->root_item, objectid);
      ret = 0;
error:
      return ret;
}

/*
 * returns 1 if the device was mounted, < 0 on error or 0 if everything
 * is safe to continue.  TODO, this should also scan multi-device filesystems
 */
int check_mounted(char *file)
{
      struct mntent *mnt;
      struct stat st_buf;
      dev_t file_dev = 0;
      dev_t file_rdev = 0;
      ino_t file_ino = 0;
      FILE *f;
      int ret = 0;

      if ((f = setmntent ("/proc/mounts", "r")) == NULL)
            return -errno;

      if (stat(file, &st_buf) < 0) {
            return -errno;
      } else {
            if (S_ISBLK(st_buf.st_mode)) {
                  file_rdev = st_buf.st_rdev;
            } else {
                  file_dev = st_buf.st_dev;
                  file_ino = st_buf.st_ino;
            }
      }

      while ((mnt = getmntent (f)) != NULL) {
            if (strcmp(file, mnt->mnt_fsname) == 0)
                  break;

            if (stat(mnt->mnt_fsname, &st_buf) == 0) {
                  if (S_ISBLK(st_buf.st_mode)) {
                        if (file_rdev && (file_rdev == st_buf.st_rdev))
                              break;
                  } else if (file_dev && ((file_dev == st_buf.st_dev) &&
                                    (file_ino == st_buf.st_ino))) {
                              break;
                  }
            }
      }

      if (mnt) {
            /* found an entry in mnt table */
            ret = 1;
      }

      endmntent (f);
      return ret;
}

00641 struct pending_dir {
      struct list_head list;
      char name[256];
};

void btrfs_register_one_device(char *fname)
{
      struct btrfs_ioctl_vol_args args;
      int fd;
      int ret;

      fd = open("/dev/btrfs-control", O_RDONLY);
      if (fd < 0) {
            fprintf(stderr, "failed to open /dev/btrfs-control "
                  "skipping device registration\n");
            return;
      }
      strcpy(args.name, fname);
      ret = ioctl(fd, BTRFS_IOC_SCAN_DEV, &args);
      close(fd);
}

int btrfs_scan_one_dir(char *dirname, int run_ioctl)
{
      DIR *dirp = NULL;
      struct dirent *dirent;
      struct pending_dir *pending;
      struct stat st;
      int ret;
      int fd;
      int dirname_len;
      int pathlen;
      char *fullpath;
      struct list_head pending_list;
      struct btrfs_fs_devices *tmp_devices;
      u64 num_devices;

      INIT_LIST_HEAD(&pending_list);

      pending = malloc(sizeof(*pending));
      if (!pending)
            return -ENOMEM;
      strcpy(pending->name, dirname);

again:
      dirname_len = strlen(pending->name);
      pathlen = 1024;
      fullpath = malloc(pathlen);
      dirname = pending->name;

      if (!fullpath) {
            ret = -ENOMEM;
            goto fail;
      }
      dirp = opendir(dirname);
      if (!dirp) {
            fprintf(stderr, "Unable to open /sys/block for scanning\n");
            return -ENOENT;
      }
      while(1) {
            dirent = readdir(dirp);
            if (!dirent)
                  break;
            if (dirent->d_name[0] == '.')
                  continue;
            if (dirname_len + strlen(dirent->d_name) + 2 > pathlen) {
                  ret = -EFAULT;
                  goto fail;
            }
            snprintf(fullpath, pathlen, "%s/%s", dirname, dirent->d_name);
            ret = lstat(fullpath, &st);
            if (ret < 0) {
                  fprintf(stderr, "failed to stat %s\n", fullpath);
                  continue;
            }
            if (S_ISLNK(st.st_mode))
                  continue;
            if (S_ISDIR(st.st_mode)) {
                  struct pending_dir *next = malloc(sizeof(*next));
                  if (!next) {
                        ret = -ENOMEM;
                        goto fail;
                  }
                  strcpy(next->name, fullpath);
                  list_add_tail(&next->list, &pending_list);
            }
            if (!S_ISBLK(st.st_mode)) {
                  continue;
            }
            fd = open(fullpath, O_RDONLY);
            if (fd < 0) {
                  fprintf(stderr, "failed to read %s\n", fullpath);
                  continue;
            }
            ret = btrfs_scan_one_device(fd, fullpath, &tmp_devices,
                                  &num_devices,
                                  BTRFS_SUPER_INFO_OFFSET);
            if (ret == 0 && run_ioctl > 0) {
                  btrfs_register_one_device(fullpath);
            }
            close(fd);
      }
      if (!list_empty(&pending_list)) {
            free(pending);
            pending = list_entry(pending_list.next, struct pending_dir,
                             list);
            list_del(&pending->list);
            closedir(dirp);
            goto again;
      }
      ret = 0;
fail:
      free(pending);
      if (dirp)
            closedir(dirp);
      return ret;
}

int btrfs_scan_for_fsid(struct btrfs_fs_devices *fs_devices, u64 total_devs,
                  int run_ioctls)
{
      return btrfs_scan_one_dir("/dev", run_ioctls);
}

int btrfs_device_already_in_root(struct btrfs_root *root, int fd,
                         int super_offset)
{
      struct btrfs_super_block *disk_super;
      char *buf;
      int ret = 0;

      buf = malloc(BTRFS_SUPER_INFO_SIZE);
      if (!buf) {
            ret = -ENOMEM;
            goto out;
      }
      ret = pread(fd, buf, BTRFS_SUPER_INFO_SIZE, super_offset);
      if (ret != BTRFS_SUPER_INFO_SIZE)
            goto brelse;

      ret = 0;
      disk_super = (struct btrfs_super_block *)buf;
      if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
          sizeof(disk_super->magic)))
            goto brelse;

      if (!memcmp(disk_super->fsid, root->fs_info->super_copy.fsid,
                BTRFS_FSID_SIZE))
            ret = 1;
brelse:
      free(buf);
out:
      return ret;
}

static char *size_strs[] = { "", "KB", "MB", "GB", "TB",
                      "PB", "EB", "ZB", "YB"};
char *pretty_sizes(u64 size)
{
      int num_divs = 0;
      u64 last_size = size;
      u64 fract_size = size;
      float fraction;
      char *pretty;

      while(size > 0) {
            fract_size = last_size;
            last_size = size;
            size /= 1024;
            num_divs++;
      }
      if (num_divs == 0)
            num_divs = 1;
      if (num_divs > ARRAY_SIZE(size_strs))
            return NULL;

      fraction = (float)fract_size / 1024;
      pretty = malloc(16);
      sprintf(pretty, "%.2f%s", fraction, size_strs[num_divs-1]);
      return pretty;
}


Generated by  Doxygen 1.6.0   Back to index